3.1.61 \(\int \frac {(a+c x^2)^{3/2}}{x (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=496 \[ -\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}-\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (c^2 d e^2-f (c d-a f)^2\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (\sqrt {e^2-4 d f}+e\right ) \left (c^2 d e^2-f (c d-a f)^2\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {c^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}+\frac {\sqrt {a+c x^2} (c d-a f)}{d f}+\frac {a \sqrt {a+c x^2}}{d} \]

________________________________________________________________________________________

Rubi [A]  time = 2.57, antiderivative size = 496, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 11, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {6728, 266, 50, 63, 208, 1020, 1080, 217, 206, 1034, 725} \begin {gather*} -\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (e-\sqrt {e^2-4 d f}\right ) \left (c^2 d e^2-f (c d-a f)^2\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (\sqrt {e^2-4 d f}+e\right ) \left (c^2 d e^2-f (c d-a f)^2\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}-\frac {c^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}+\frac {\sqrt {a+c x^2} (c d-a f)}{d f}+\frac {a \sqrt {a+c x^2}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)),x]

[Out]

(a*Sqrt[a + c*x^2])/d + ((c*d - a*f)*Sqrt[a + c*x^2])/(d*f) - (c^(3/2)*e*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])
/f^2 - ((2*e*f*(c^2*d^2 - a^2*f^2) - (c^2*d*e^2 - f*(c*d - a*f)^2)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c
*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/
(Sqrt[2]*d*f^2*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + ((2*e*f*(c^2*d^2 - a
^2*f^2) - (c^2*d*e^2 - f*(c*d - a*f)^2)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)
/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*f^2*Sqrt[e^2 - 4
*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - (a^(3/2)*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1020

Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(h*(a + c*x^2)^p*(d + e*x + f*x^2)^(q + 1))/(2*f*(p + q + 1)), x] + Dist[1/(2*f*(p + q + 1)), Int[(a + c*x^2)
^(p - 1)*(d + e*x + f*x^2)^q*Simp[a*h*e*p - a*(h*e - 2*g*f)*(p + q + 1) - 2*h*p*(c*d - a*f)*x - (h*c*e*p + c*(
h*e - 2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ[
p, 0] && NeQ[p + q + 1, 0]

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1080

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + (B*c - b*C)*x)/((a + b*x + c*x^2)
*Sqrt[d + f*x^2]), x], x] /; FreeQ[{a, b, c, d, f, A, B, C}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+c x^2\right )^{3/2}}{x \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {\left (a+c x^2\right )^{3/2}}{d x}+\frac {(-e-f x) \left (a+c x^2\right )^{3/2}}{d \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {\left (a+c x^2\right )^{3/2}}{x} \, dx}{d}+\frac {\int \frac {(-e-f x) \left (a+c x^2\right )^{3/2}}{d+e x+f x^2} \, dx}{d}\\ &=-\frac {\left (a+c x^2\right )^{3/2}}{3 d}+\frac {\operatorname {Subst}\left (\int \frac {(a+c x)^{3/2}}{x} \, dx,x,x^2\right )}{2 d}+\frac {\int \frac {(-3 a e f+3 f (c d-a f) x) \sqrt {a+c x^2}}{d+e x+f x^2} \, dx}{3 d f}\\ &=\frac {(c d-a f) \sqrt {a+c x^2}}{d f}+\frac {a \operatorname {Subst}\left (\int \frac {\sqrt {a+c x}}{x} \, dx,x,x^2\right )}{2 d}+\frac {\int \frac {-3 a^2 e f^2-3 f (c d-a f)^2 x-3 c^2 d e f x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{3 d f^2}\\ &=\frac {a \sqrt {a+c x^2}}{d}+\frac {(c d-a f) \sqrt {a+c x^2}}{d f}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 d}+\frac {\int \frac {3 c^2 d^2 e f-3 a^2 e f^3+\left (3 c^2 d e^2 f-3 f^2 (c d-a f)^2\right ) x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{3 d f^3}-\frac {\left (c^2 e\right ) \int \frac {1}{\sqrt {a+c x^2}} \, dx}{f^2}\\ &=\frac {a \sqrt {a+c x^2}}{d}+\frac {(c d-a f) \sqrt {a+c x^2}}{d f}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{c d}-\frac {\left (c^2 e\right ) \operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{f^2}+\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d f^2 \sqrt {e^2-4 d f}}-\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d f^2 \sqrt {e^2-4 d f}}\\ &=\frac {a \sqrt {a+c x^2}}{d}+\frac {(c d-a f) \sqrt {a+c x^2}}{d f}-\frac {c^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}-\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}-\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d f^2 \sqrt {e^2-4 d f}}+\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d f^2 \sqrt {e^2-4 d f}}\\ &=\frac {a \sqrt {a+c x^2}}{d}+\frac {(c d-a f) \sqrt {a+c x^2}}{d f}-\frac {c^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}-\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {\left (2 e f \left (c^2 d^2-a^2 f^2\right )-\left (c^2 d e^2-f (c d-a f)^2\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}-\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.58, size = 746, normalized size = 1.50 \begin {gather*} -\frac {a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}-\frac {c^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}+\frac {a \sqrt {a f^2+\frac {1}{2} c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{2 d f}-\frac {a e \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{4 d f \sqrt {e^2-4 d f}}-\frac {\left (c d \left (\sqrt {e^2-4 d f}-e\right )-a f \left (\sqrt {e^2-4 d f}+e\right )\right ) \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )} \tanh ^{-1}\left (\frac {2 a f+c x \left (\sqrt {e^2-4 d f}-e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )}}\right )}{4 d f^2 \sqrt {e^2-4 d f}}-\frac {c \sqrt {a f^2+\frac {1}{2} c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{2 f^2}-\frac {c e \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{4 f^2 \sqrt {e^2-4 d f}}+\frac {c \sqrt {a+c x^2}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)),x]

[Out]

(c*Sqrt[a + c*x^2])/f - (c^(3/2)*e*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/f^2 - ((c*d*(-e + Sqrt[e^2 - 4*d*f])
- a*f*(e + Sqrt[e^2 - 4*d*f]))*Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f + c*(-e
 + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(4*d*f^2
*Sqrt[e^2 - 4*d*f]) - (c*Sqrt[a*f^2 + (c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]))/2]*ArcTanh[(2*a*f - c*(e + Sqrt[
e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(2*f^2) + (a*Sqrt
[a*f^2 + (c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]))/2]*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^
2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(2*d*f) - (c*e*Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f
 + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sq
rt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(4*f^2*Sqrt[e^2 - 4*d*f]) - (a*e*Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt
[e^2 - 4*d*f])]*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 -
4*d*f])]*Sqrt[a + c*x^2])])/(4*d*f*Sqrt[e^2 - 4*d*f]) - (a^(3/2)*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.68, size = 559, normalized size = 1.13 \begin {gather*} \frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e+a^2 f\&,\frac {\text {$\#$1}^2 \left (-a^2\right ) f^3 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-\text {$\#$1}^2 c^2 d^2 f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+\text {$\#$1}^2 c^2 d e^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1}^2 a c d f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a^3 f^3 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-2 a^2 c d f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} a^2 \sqrt {c} e f^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} c^{5/2} d^2 e \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a c^2 d^2 f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-a c^2 d e^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )}{2 \text {$\#$1}^3 f-3 \text {$\#$1}^2 \sqrt {c} e-2 \text {$\#$1} a f+4 \text {$\#$1} c d+a \sqrt {c} e}\&\right ]}{d f^2}+\frac {2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}-\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}+\frac {c^{3/2} e \log \left (\sqrt {a+c x^2}-\sqrt {c} x\right )}{f^2}+\frac {c \sqrt {a+c x^2}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)),x]

[Out]

(c*Sqrt[a + c*x^2])/f + (2*a^(3/2)*ArcTanh[(Sqrt[c]*x)/Sqrt[a] - Sqrt[a + c*x^2]/Sqrt[a]])/d + (c^(3/2)*e*Log[
-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/f^2 + RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*
e*#1^3 + f*#1^4 & , (-(a*c^2*d*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]) + a*c^2*d^2*f*Log[-(Sqrt[c]*x) +
Sqrt[a + c*x^2] - #1] - 2*a^2*c*d*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + a^3*f^3*Log[-(Sqrt[c]*x) + Sq
rt[a + c*x^2] - #1] - 2*c^(5/2)*d^2*e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + 2*a^2*Sqrt[c]*e*f^2*Log[-(
Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + c^2*d*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 - c^2*d^2*f*Lo
g[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 + 2*a*c*d*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 - a^2*
f^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f
*#1^3) & ]/(d*f^2)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.02, size = 9728, normalized size = 19.61 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (c x^{2} + a\right )}^{\frac {3}{2}}}{{\left (f x^{2} + e x + d\right )} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(3/2)/x/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate((c*x^2 + a)^(3/2)/((f*x^2 + e*x + d)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,x^2+a\right )}^{3/2}}{x\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)),x)

[Out]

int((a + c*x^2)^(3/2)/(x*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + c x^{2}\right )^{\frac {3}{2}}}{x \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(3/2)/x/(f*x**2+e*x+d),x)

[Out]

Integral((a + c*x**2)**(3/2)/(x*(d + e*x + f*x**2)), x)

________________________________________________________________________________________